¿Que es?
Es la rama de la física y especialización de la ingeniería, que estudia y emplea sistemas cuyo funcionamiento se basa en la conducción y el control del flujo de los electrones u otras partículas cargadas eléctrica mente.
Historia...
Lee De Forest es considerado el Padre de la electrónica, ya que antes del Triodo, solo nos limitábamos a convertir la corriente alterna en corriente directa o continua, o sea, solo se construían las fuentes de Alimentación, pero con la creación del Triodo de Vacío, vino la Amplificación de todo tipo de señales, sobre todo la de Audio, la Radio, la TV y todo lo demás, esto hizo que la industria de estos equipos tuvieran un repunte tan grande que ya para las décadas superiores al 1930 se acuñara la palabra por primera vez de "Electrónica" para referirse a la tecnología de estos equipos emergentes.
¿Que es un circuito?
Un circuito es una red eléctrica (interconexión de dos o más componentes, tales como resistencia,inductores, condensadores,fuentes, interruptores y semiconductores) que contiene al menos una trayectoria cerrada. Los circuitos que contienen solo fuentes, componentes lineales (resistores, condensadores, inductores) y elementos de distribución lineales (líneas de transmisión o cables) pueden analizarse por métodos algebraicos para determinar su comportamiento en corriente directa o en corriente alterna. Un circuito que tiene componentes electrónicos es denominado un circuito electrónico. Estas redes son generalmente no lineales y requieren diseños y herramientas de análisis mucho más complejos.
ElectroYS
Conceptos básicos de la Electrònica
viernes, 25 de octubre de 2013
Electronica Basica
Fuentes de Tensión
Los circuitos electrónicos deben poseer para su funcionamiento adecuado de al menos una fuente de energía eléctrica, que debe ser una fuente de tensión o de corriente.
Fuente de tensión ideal
Es una fuente de tensión que produce una tensión de salida constante, es una Fuente de Tensión con Resistencia interna cero. Toda la tensión va a la carga RL.
Fuente de tensión:
Algunos ejemplos de fuentes de tensión reales son:
Son las fuentes de tensión que tenemos en la realidad, como ya hemos dicho no existe una fuente ideal de tensión, ninguna fuente real de tensión puede producir una corriente infinita, ya que en toda fuente real tiene cierta resistencia interna.
Veamos que ocurre en 2 casos, cuando RL vale 10 W y cuando vale 5 W.
Ahora la tensión en la carga no es horizontal, esto es, no es ideal como en el caso anterior.
Fuente de tensión (aproximadamente) constante
Para que una fuente de tensión sea considerada como una "Fuente de tensión constante", se tiene que cumplir que la resistencia interna de la fuente (Rint) no este, esto es que sea despreciable. Para que despreciemos la Rint se tiene que cumplir:- Fuente de tensión ideal es la que tiene una Rint. = 0 y produce en la salida una VL = cte.
- Fuente de tensión real es la que tiene una determinada Rint. En esta Rint. hay una pérdida de tensión. El resto de tensión va a la carga que es la que se aprovecha.
- Fuente de tensión constante es la que tiene una Rint. <= RL/100. La caída en la Rint. es como mucho el 1 %, aproximadamente a la ideal, que es el 0 %.
Conductores:
Un conductor es un material que, en mayor o menor medida, conduce el calor y la electricidad. Son buenos conductores los metales y malos, el vidrio, la madera, la lana y el aire.
NOTA: Definimos la unidad de carga +1 como +1,6·10-19 culombios. Así un electrón tiene una carga -1 equivalente a -1,6·10-19culombios.
El conductor más utilizado y el que ahora analizaremos es el Cobre (valencia 1), que es un buen conductor. Su estructura atómica la vemos en la siguiente figura.
En cada órbita caben 2n2 siendo n un número entero n = 1, 2, 3, ... Así en la primera órbita (n = 1) caben 212 = 2 electrones. En la segunda órbita 2·22 = 8 electrones. En la tercera órbita 2·32 = 18 electrones. Y la cuarta órbita solo tiene 1 electrón aunque en ella caben 2·42 = 32 electrones.
Lo que interesa en electrónica es la órbita exterior, que es la que determina las propiedades del átomo. Como hay + 29 y - 28, queda con + 1.
Por ello vamos a agrupar el núcleo y las órbitas internas, y le llamaremos parte interna. En el átomo de cobre la parte interna es el núcleo (+ 29) y las tres primeras órbitas (- 28), con lo que nos queda la parte interna con una carga neta de +1.
Lo que define a un buen conductor es el hecho de tener un solo electrón en la órbita de valencia (valencia 1).
Así, tenemos que:
- A 0 ºK (-273 ºC) un metal no conduce.
- A Temperatura ambiente 300 ºK ya hay electrones libres debidos a la energía térmica.
Como ya conocemos, el electrón tiene una carga negativa (-1,619-19 culombios) y por tanto el convenio tomado para definir la corriente (contrario al movimiento de las cargas negativas) nos indica que la corriente toma el sentido indicado en la figura.
El electrón se mueve dentro de la red cristalina del metal con una velocidad media.
Electrónica avanzada
El diodo Zener
La aplicación de estos diodos se ve en los Reguladores de Tensión y actúa como dispositivo de tensión constante (como una pila).
Símbolo:
Característica
Su gráfica es de la siguiente forma:
Un diodo normal también tiene una zona de ruptura, pero no puede funcionar en él, con el Zener si se puede trabajar en esa zona.
La potencia máxima que resiste en la "Zona de Ruptura" ("Zona Zener"):
En la zona de ruptura se produce el "Efecto Avalancha" ó "Efecto Zener", esto es, la corriente aumenta bruscamente.
Para fabricar diodos con un valor determinado de tensión de ruptura (VZ) hay que ver la impurificación porque VZ es función de la impurificación (NA ó ND), depende de las impurezas.
La zona de ruptura no es una vertical, realmente tiene una inclinación debida a RZ:
En un "Diodo Zener Real" todos son curvas, pero para facilitar los cálculos se aproxima siempre.
Las aproximaciones para el zener son estas:
Modelo ideal (1ª aproximación)
Si buscamos su equivalente veremos que es una pila con la tensión VZ.
Esto solo es válido entre IZmín y IZmáx.
2ª aproximación
Como en el caso anterior lo sustituimos por un modelo equivalente:
El circuito es un limitador con diodos zener. En este circuito, cuando un diodo esta polarizado en directa, el otro diodo lo estará en inversa.
Se utiliza la segunda aproximación de los diodos.
Podemos variar la escala de la gráfica modificando la escala del eje y.
Cada vez que se introduzcan nuevos datos, pulsar el botón "Calcular".
Para realización de esta simulación se han tomado estas equivalencias:
RL = Rload VL = Vloa
El transistor sin polarizar
El transistor esta compuesto por tres zonas de dopado, como se ve en la figura:En este ejemplo concreto el transistor es un dispositivo npn, aunque también podría ser un pnp.
En principio es similar a dos diodos
Un transistor es similar a dos diodos, el transistor tiene dos uniones: una entre el emisor y la base y la otra entre la base y el colector. El emisor y la base forman uno de los diodos, mientras que el colector y la base forman el otro. Estos diodos son denominados: "Diodo de emisor" (el de la izquierda en este caso) y "Diodo de colector" (el de la derecha en este caso).
Antes y después de la difusión
Vamos a hacer un estudio del transistor npn, primeramente cuando está sin polarizar (sin pilas y en circuito abierto) se produce una "Difusión" (como un gas en una botella), donde los electrones cruzan de la zona n a la zona p, se difunden, encuentran un hueco y se recombinan. Esto hace que en las uniones entre las zonas n y p se creen iones positivos y negativos.
Suscribirse a:
Entradas (Atom)